

International Conference on Monte Carlo Techniques for Medical Application (MCMA2017) - *Napoli 15<sup>th</sup>-18<sup>th</sup> October 2017* 

#### Breast Model Validation for Monte Carlo Evaluation of Normalized Glandular Dose Coefficients in Mammography

A. Sarno, G. Mettivier, F. Di Lillo, K. Bliznakova, I. Sechopoulos and P. Russo

Napoli, 17<sup>th</sup> October 2017









#### sarno@na.infn.it

#### Dosimetry in mammography

Mean Glandular Dose (MGD) = DgN ( or  $c \cdot g \cdot s$ )  $\cdot K$ 

Air kerma at the breast surface

Coefficients calculated via MC simulations



#### Breast model assumptions: skin thickness

![](_page_2_Figure_1.jpeg)

| Model from      | Skin layer (mm) | Adipose layer (mm) |
|-----------------|-----------------|--------------------|
| Dance (1990)    | 0.00            | 5.00               |
| Wu et al (1991) | 4.00            | 0.00               |
| BCT experiments | 1.45            | 0.00               |
| Histology       | 1.45            | 2.00               |

![](_page_2_Picture_3.jpeg)

#### Breast model assumptions: glandular distribution

![](_page_3_Figure_1.jpeg)

#### MC code for breast dosimetry

Code based on GEANT4 toolkit

Physics list: Option4

Code validated vs AAPM TG195 data

![](_page_4_Figure_4.jpeg)

# 20 voxelized patient specific breast phantoms from 3D breast images

![](_page_5_Figure_1.jpeg)

\*Sechopoulos et al 2012, "Characterization of the homogeneous tissue mixture approximation in breast imaging dosimetry." *Med. Phys.* 39 5050-5059.

#### MC validation for the heterogeneous model

![](_page_6_Figure_1.jpeg)

#### Skin thickness influence on the MGD

Compressed breast thickness = 5 cm; glandular fraction = 20%

![](_page_7_Figure_2.jpeg)

#### Skin model influence on the MGD

Compressed breast thickness = 5 cm; glandular fraction = 20%

![](_page_8_Figure_2.jpeg)

### Standard models vs. patient specific phantoms

![](_page_9_Figure_1.jpeg)

#### New models vs. patient specific phantoms

![](_page_10_Figure_1.jpeg)

#### Conclusions

- The skin model in MC simulations presents a large influence on MGD estimates;
- ➤A simple breast model can produce MGD underestimation up to about 40% when compared to the dose estimates via patient specific breast phantoms;
- ➤The model proposed by Wu et al (1991) led to the lowest dose overestimation (18%) combined with the highest MGD underestimation (-40%) for a specific breast;
- ➢ Breast model with a 1.45 mm skin thickness and the Dance's model led to the lowest differences (1%), on average, when compared to patient specific breast phantoms, with respect to Wu's model (-11%).

## Thank you!!! Any questions?

![](_page_12_Picture_1.jpeg)

International Conference on Monte Carlo Techniques for Medical Application (MCMA2017) - *Napoli 15<sup>th</sup>-18<sup>th</sup> October 2017* 

![](_page_12_Picture_3.jpeg)